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Using the Hamilton-Jacobi method, we solve chemical Fokker-Planck equations within the Gaussian
approximation and obtain a simple and compact formula for a conditional probability distribution.
The formula holds in general transient situations, and can be applied not only to a steady state but
also to an oscillatory state. By analyzing the long time behavior of the solution in the oscillatory
case, we obtain the phase diffusion constant along the periodic orbit and the steady distribution
perpendicular to it. A simple method for numerical evaluation of these formulas are devised, and
they are compared with Monte Carlo simulations in the case of Brusselator as an example. Some
results are shown to be identical to previously obtained expressions. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4834636]

I. INTRODUCTION

Chemical reactions are molecular processes and subject
to the molecular fluctuations. Such fluctuations are negligi-
ble in homogeneous macroscopic systems and the rate equa-
tion description is precise enough. However, as the number
of molecules involved decreases, the fluctuations become vis-
ible and the system behavior may be quite different from
the one expected from the rate equation, especially in non-
equilibrium systems that show chemical oscillation, bifurca-
tion, bistability, etc.

The study on stochasticity in chemical reactions has a
long history as a fundamental problem of irreversible statis-
tical physics,1–3 but its interests remained largely academic
until recently because experimental observations were lim-
ited. However, recent development of experiments by single
molecule measurement on biological systems starts revealing
molecular fluctuations in chemical reactions with extremely
small numbers of molecules.4–12 This should provide abun-
dant observations on molecular fluctuations in chemical reac-
tions, and will shed new light on this old problem.

The molecular fluctuations in chemical reactions have
been studied by chemical master equations for the distri-
bution function of molecular numbers of each chemical
species.1–3 For spatially homogeneous systems, transition
probabilities of molecular reactions are given by a func-
tion of molecular concentrations with a coefficient propor-
tional to the system size �. In the large � limit, Kramers-
Moyal expansion13, 14 of the chemical master equation gives
the Fokker-Planck equation, where the molecular fluctuation
effects are represented by the generalized diffusion term of
the order of 1/�. Using the analogy between the Fokker-
Planck equation and the Schrödinger equation, the Hamilton-
Jacobi formalism has been employed to obtain the distribu-
tion function in terms of the potential function,15, 16 and there
have been attempts to solve this equations using the 1/�
expansion17–19 and the Mori-Zwanzig projection method.20, 21

Recently, the transition probabilities and the dominant paths

among meta-stable states in biological systems have been
studied using the path-integral formalism22, 23 and WKB
approximation.24

Gaspard has developed the method to calculate the cor-
relation time of chemical oscillators.25–27 With his formalism,
the probability distribution for the molecular numbers can be
obtained for a non-stationary state by solving corresponding
Hamilton’s canonical equations. In this work, we further de-
velop the formalism to obtain an explicit expression for the
distribution functions in general situations including the case
of chemical oscillations.

The paper is organized as follows. In Sec. II, we review
the Hamilton-Jacobi formalism for the chemical master equa-
tion to establish the notations. In Sec. III, our main result is
derived, i.e., the fundamental solution for the Fokker-Planck
equation in the Gaussian approximation. In Sec. IV, the for-
mula is examined in the situation of a steady state and that of
a oscillatory state. It is shown that our formula reduces to the
one by the linear noise approximation in the case of steady
states. In Sec. V, taking the Brusselator as an example, the
formulas are evaluated numerically and compared with the
results of Monte Carlo simulations. The concluding remarks
are given in Sec. VI. Detailed derivations of some of the re-
sults and the formulas for numerical evaluation are presented
in the Appendices.

II. FORMULATION

We review the Hamilton-Jacobi method for the chemical
master equation to establish the notation, basically following
the formalism by Gaspard.26

A. Molecular fluctuation in chemical reactions

Consider the system that contains d chemical species
denoted by Xi (i = 1, 2, · · · , d), among which r chemical
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reactions are taking place:

d∑
i=1

νi
ρ−Xi →

d∑
i=1

νi
ρ+Xi (ρ = 1, 2, · · · , r), (1)

where νi
ρ± are integers. Thus, the number of ith molecule Xi

changes by the ρth reaction event as

Xi → Xi + �Xi
ρ (2)

with the stoichiometric coefficient �Xi
ρ ≡ νi

ρ+ − νi
ρ−. In or-

der that a steady chemical oscillation be possible, the system
needs steady input and output flows, which may also be in-
cluded in Eq. (1) as the form of chemical reactions.

Let � be the system volume. Then the transition rate Wρ

of the reaction ρ may be given by

Wρ(X) = kρ�

d∏
i=1

νi
ρ−∏

m=1

Xi − m + 1

�
, (3)

with the reaction constant kρ , assuming the system is spatially
homogeneous. Then, the master equation for the probability
distribution of the molecular numbers P (X, t) is given by

d

dt
P (X, t) =

r∑
ρ=1

[Wρ(X − �Xρ)P (X − �Xρ, t)

−Wρ(X)P (X, t)]. (4)

B. Chemical Fokker-Planck equation

In the large � limit, this can be approximated as the
chemical Fokker-Planck equation for the concentration dis-
tribution function,

P (x, t) ≡ �−dP (X, t); x ≡ X
�

. (5)

In the lowest order of �, the Fokker-Planck equation may be
written in the form of

1

�

∂

∂t
P (x, t) = −H

(
x,

1

�

∂

∂x

)
P (x, t) (6)

using the “Hamiltonian”

H (x, p) ≡
∑

i

piFi(x) −
∑
ij

pipjQij (x), (7)

where

Fi(x) ≡ lim
�→∞

1

�

r∑
ρ=1

�Xi
ρ Wρ(�x), (8)

Qij (x) ≡ lim
�→∞

1

2

1

�

r∑
ρ=1

�Xi
ρ�Xj

ρ Wρ(�x). (9)

The F-term represents the average flow given by the rate
equations,

d

dt
x = F(x), (10)

while the Q-term represents the diffusion due to the molecular
fluctuation around the average motion.

C. Hamilton-Jacobi method

Assuming the form of solution for Eq. (6) as

P (x, t) = exp[�φ(x, t)] (11)

with the function φ(x, t), we can put the Fokker-Planck equa-
tion in the form of Hamilton-Jacobi equation

∂φ(x, t)

∂t
+ H

(
x,

∂φ(x, t)

∂t

)
= 0 (12)

in the lowest order of 1/�.
According to Hamilton-Jacobi theory of classical me-

chanics, the solution φ(x, t) of Eq. (12) gives the position x(t)
and the momentum

p(t) = ∂φ(x, t)

∂x
(13)

that satisfy Hamilton’s canonical equations of motion

ẋi(t) = ∂H

∂pi

= Fi(x) −
∑

j

2Qij (x)pj , (14)

ṗi(t) = −∂H

∂xi

= −
∑

j

∂Fj (x)

∂xi

pj +
∑
j,k

∂Qjk(x)

∂xi

pjpk.

(15)

Conversely, the solution of Hamilton-Jacobi equation (12) can
be constructed through x(t) and p(t) that satisfy Hamilton’s
canonical equations (14) and (15) as

φ(x, t) =
∫ t

0

(∑
i

pi(t
′)

dxi(t ′)
dt ′

− H
(
x(t ′), p(t ′)

))
dt ′

+φ0(x0)

≡ J (x0, p0, t) + φ0(x0), (16)

where φ0(x) is the initial condition of φ(x, t) at t = 0, and x0

and p0 = ∂φ0/∂x0 are the initial values of x(t) and p(t) that
lead to x at the time t. The function J (x0, p0, t) is the action
integral along x(t) and p(t) with this initial condition. Note
that the rate equation (10) is given by the canonical equation
(14) within the p = 0 subspace, where H = 0.

III. APPROXIMATE SOLUTION
OF HAMILTON-JACOBI EQUATION

We will derive an approximate solution for φ(x, t) to ob-
tain a non-equilibrium distribution function (11) in the Gaus-
sian approximation. Suppose that the system starts from a
point x∗

0 at time t = 0. We take the initial distribution to be
Gaussian given by

φ(x, 0) = φ0(x) = − 1

2σ 2
0

(x − x∗
0)2, (17)

and will take the infinitesimal limit of σ 2
0 after we obtain the

expression for φ(x, t).
Let x∗(t) be the solution of the rate equation (10) with

the initial condition x∗(0) = x∗
0, then x∗(t) and p∗(t) = 0 are
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the solution of Hamilton’s canonical equations (14) and (15)
with the initial condition

x∗(0) = x∗
0, p∗(0) = ∂φ(x, 0)

∂x

∣∣∣
x=x∗

0

= 0. (18)

One can see that the maximum of the distribution is always
located at x∗(t) because

∂φ(x, t)

∂x

∣∣∣
x=x∗(t)

= p∗(t) = 0. (19)

We expand φ(x, t) around this maximum point x = x∗(t) as

φ(x, t)≈φ(x∗(t), t)+ 1

2

∑
i,j

∂2φ

∂xi∂xj

∣∣∣∣
∗
(xi − x∗

i (t))(xj − x∗
j (t))

≡ − 1

2

∑
i,j

M̂−1
ij (t)(xi − x∗

i (t))(xj − x∗
j (t)), (20)

where |∗ denotes that the derivative is evaluated at x = x∗(t).
Note that φ(x∗, t) = 0 from Eq. (16) because p∗ = 0 thus
H (x∗, p∗) = 0. Then, the distribution function is written as

P (x, t |x∗
0) =

(
�

2π

)d/2 1√
|M̂(t)|

× exp

[
−�

2
(x − x∗(t))T M̂(t)−1(x − x∗(t))

]
(21)

within Gaussian approximation, and the variances are ob-
tained by

〈(xi − x∗
i )(xi − x∗

j )〉 ≡
∫

dx (xi − x∗
i )(xi − x∗

j )P (x, t |x∗
0)

= 1

�
M̂ij (t), (22)

using the matrix M̂ defined by Eq. (20).
Note that Eq. (21) represents the conditional probabil-

ity distribution, i.e., the fundamental solution of the Fokker-
Planck equation with the initial distribution localized at
x = x∗

0. We will derive a compact expression of the covari-
ance matrix M̂(t) in the following.

A. Expansion around the rate equation orbit x∗(t)

The expansion coefficient of Eq. (20) may be written as

−M̂−1
ij (t) = ∂2φ(x, t)

∂xi∂xj

∣∣∣∣
∗

= ∂pj

(
x0(x, t), t

)
∂xi

∣∣∣∣
∗
, (23)

where pj (x0, t) denotes the jth component of the momen-
tum at t from the initial condition (x0, p0) with p0 = ∂φ0/

∂x|x=x0 . Conversely, the initial position x0 can be denoted by
x0(x, t) as a function of the ending point x at which the so-
lution of Hamilton’s equations arrives at the time t. Note that
the momentum p is always related to x by Eq. (13).

In order to evaluate Eq. (23), we will consider the linear
expansion of Hamilton’s equations (14) and (15) around the
rate equation orbit (x∗(t), 0):

δ ẋ(t) = L̂(t)δx(t) − 2Q̂(t)δ p(t), (24)

δ ṗ(t) = −L̂†(t)δ p(t), (25)

where (δx(t), δ p(t)) ≡ (x(t) − x∗(t), p(t)). The matrix L̂(t)
and Q̂(t) are defined as

Lij (t) ≡ ∂Fi

∂xj

∣∣∣∣
x=x∗(t)

, Qij (t) ≡ Qij (x∗(t)), (26)

and † denotes the transposed matrix. Note that the opera-
tor L̂(t) represents the time development of δx within the
p = 0 subspace, namely, the deviation given within the rate
equation (10).

We define the time evolution operator for the deviation
within the rate equation, i.e., for δx(t) within the p = 0
subspace,

ÛL(t, t0) ≡ T exp

[∫ t

t0

dt ′L̂(t ′)
]

, (27)

where T is the time ordering operator. Then the formal solu-
tion of Eqs. (24) and (25) for both δx and δ p can be written
down as

δx(t) = ÛL(t, 0)[δx(0) − 2Q̂L(t)δ p(0)], (28)

δ p(t) = Û
†
L(0, t)δ p(0), (29)

where we have introduced the symmetric matrix

Q̂L(t) ≡
∫ t

0
dt ′ÛL(0, t ′)Q̂(t ′)Û †

L(0, t ′). (30)

Basic properties of ÛL(t, t0) are given in Appendix A.

B. Expression for M̂(t)

The initial deviation δ p(0) is related to δx(0) through
Eqs. (17) and (18) as

δ p(0) = ∂φ0(x)

∂x

∣∣∣
x=x(0)

= − 1

σ 2
0

δx(0), (31)

therefore, Eqs. (28) and (29) become

δx(t) = ÛL(t, 0)

[
1 − 2Q̂L(t)

(
− 1

σ 2
0

)]
δx(0), (32)

δ p(t) = Û
†
L(0, t)

(
− 1

σ 2
0

)
δx(0), (33)

which lead to the relation between δ p(t) and δx(t),

δ p(t) = Û
†
L(0, t)

(
− 1

σ 2
0

)[
1 − 2Q̂L(t)

(
− 1

σ 2
0

)]−1

× ÛL(0, t) δx(t)

→ − Û
†
L(0, t)

1

2
Q̂−1

L (t) ÛL(0, t) δx(t) (34)

in the limit of σ 2
0 → 0. Using Eq. (23), we obtain the expres-

sion for the covariance matrix

M̂−1(t) = Û
†
L(0, t)

1

2
Q̂−1

L (t) ÛL(0, t), (35)

or

M̂(t) = ÛL(t, 0) 2Q̂L(t) Û
†
L(t, 0). (36)
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Note that the covariance matrix satisfies

d

dt
M̂(t) = L̂(t)M̂(t) + M̂(t)L̂†(t) + 2Q̂(t) (37)

with the initial condition M̂(0) = 0. This equation has been
obtained by the 1/� expansion of fluctuation.17

IV. DISTRIBUTION FUNCTIONS

The major result of this paper is the expression of the
covariance matrix (36) for the probability distribution (21),
which holds in general transient situations as long as the
Gaussian approximation is valid. In this section, we will ex-
amine this result for two cases: the case where the rate equa-
tion leads to a stationary state, and the case where the rate
equation gives rise to a stable oscillation.

A. Fluctuations around the steady state

In the simple case where the rate equation leads to a sta-
tionary state x∗

s , we show that Eq. (36) results in the expres-
sions that have been obtained by the linear noise approxima-
tion for the Fokker-Planck equation.

In this case, the matrices L̂(t) and Q̂(t) of Eq. (26) con-
verge to time-independent ones as the rate equation solution
x∗(t) does,

lim
t→∞ x∗(t) = x∗

s , lim
t→∞ L̂(t) ≡ L̂s, lim

t→∞ Q̂(t) ≡ Q̂s,

(38)
therefore, the fluctuation distribution Ps(x) around the steady
state is given by

Ps(x)=
(

�

2π

)d/2 1√
|M̂s |

exp

[
−�

2
(x−x∗

s )T M̂−1
s (x − x∗

s )

]
(39)

with the covariance matrix M̂s determined by

L̂sM̂s + M̂sL̂
†
s + 2Q̂s = 0 (40)

because the covariance matrix should satisfies Eq. (37). The
time correlation of fluctuation around the steady state is ob-
tained as〈

(x(t) − x∗
s )(x(0) − x∗

s )T
〉

=
∫ [(∫

(xt −x∗
s )P (xt , t |x0) dxt

)
(x0−x∗

s )T Ps(x0)

]
dx0

=
∫

(x∗(t) − x∗
s )(x0 − x∗

s )T Ps(x0) dx0

=
∫ [

eL̂s t (x0 − x∗
s )

]
(x0 − x∗

s )T Ps(x0) dx0 = 1

�
eL̂s t M̂s,

(41)

where t > 0 and x∗(t) is the rate equation solution with the
initial condition x∗(0) = x0. We have used that x∗(t) − x∗

s

= eL̂s t (x0 − x∗
s ), assuming that x∗(t) is close to x∗

s . These ex-
pressions are identical to those obtained by the linear noise
approximation.3, 28, 29

B. Fluctuations around the periodic orbit

With our formula (21) with Eq. (35), we can also study
the fluctuations around a periodic oscillation. In this section,
we present analysis on the long time behavior of the distribu-
tion around a stable oscillation.

In an autonomous oscillatory system, the distribution re-
laxes in two ways: the phase diffusion along the periodic orbit
and the relaxation within the space perpendicular to the peri-
odic orbit. The distribution diffuses along the periodic orbit
because there is no restoring force due to the time transla-
tional symmetry; the distribution spreads over the whole orbit
after many periods of time. On the other hand, the distribu-
tion spreads perpendicular to the orbit to reach a steady form
relatively fast. The width of the distribution varies along the
orbit, depending on the local stability of the orbit. We study
these changes by considering the covariance matrix M̂(t) after
many times of the period.

1. Time evolution operator Û over the period

Let x∗(t) be the periodic solution for the rate
equation (10):

x∗(t + T ) = x∗(t), (42)

where T is the period. The initial point on the periodic orbit
is denoted by x∗

0 ≡ x∗(0). Now, we define the time evolution
operator Û around this orbit over the period T,

Û ≡ ÛL(T , 0). (43)

Note that Û depends on the starting point x∗(0) = x∗
0. In this

work, we consider only the simplest case where Û have nei-
ther degenerate eigenvalues nor Jordan blocks larger than 1.
We describe some of the properties of this operator in this
section.

At this point, it is convenient to introduce the bra and the
ket notation for the row and the column vectors, respectively.
The ith eigenvalue of Û is denoted by λi and its right and left
eigenvectors by |ei〉 and 〈fi|, respectively,

Û |ei〉 = λi |ei〉 , 〈fi | Û = 〈fi | λi, (44)

with the normalization

〈fi |ej 〉 = δi,j . (45)

For an autonomous system, the largest eigenvalue is 1 and its
eigenvectors may be given by

λ1 = 1, |e1〉 = |F (x∗
0)〉, 〈f1| = ∂ 〈p∗(0; E)|

∂E

∣∣∣∣
E=0

. (46)

Here, p∗(t ; E) is the periodic orbit outside the p = 0 plane,
where the value of the Hamiltonian (7) is non-zero, E 
= 0
(see Appendix B). The absolute values of other eigenvalues
are smaller than 1 because the periodic orbit is stable. For the
simplest case we are considering now, Û can be expressed as

Û =
∑

i

|ei〉 λi 〈fi | . (47)

Now, we define

|ei(t)〉 ≡ ÛL(t, 0) |ei〉 , 〈fi(t)| ≡ 〈fi | ÛL(0, t), (48)

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

133.5.164.215 On: Tue, 03 Dec 2013 23:37:57



214105-5 Nakanishi, Sakaue, and Wakou J. Chem. Phys. 139, 214105 (2013)

then it is easy to show that they are the right and the left eigen-
vectors of the time evolution operator ÛL(T + t, t) over the
period at x∗(t), i.e.,

ÛL(T + t, t) |ei(t)〉 = λi |ei(t)〉 ,
(49)

〈fi(t)| ÛL(T + t, t) = λi 〈fi(t)| ,
and

〈fi(t)|ej (t)〉 = δij , (50)

with

|ei(T )〉 = λi |ei〉 , 〈fi(T )| = 1

λi

〈fi | . (51)

With these notations, we have the expression

ÛL(t, 0) =
∑

�

|e�(t)〉 〈f�| . (52)

2. Phase diffusion and period fluctuation

Now, we can obtain the expression for the phase diffusion
along the periodic orbit. The unit tangential vector n̂‖ of the
periodic orbit at x∗(t) is given as a function of time by

n̂‖(t) ≡ F(x∗(t))

|F(x∗(t))| . (53)

Thus the spatial variance of the orbit in the tangential direc-
tion 〈�x2

‖ (t)〉 is obtained from

〈�x2
‖ (t)〉 = 1

�
〈n̂‖(t)|M̂(t)|n̂‖(t)〉

= 1

�

1

|F(x∗(t))|2 〈F (x∗(t))|M̂(t)|F (x∗(t))〉 (54)

in the braket notation.
Let 〈(�tx∗(t))2〉 be the variance of the time when each

sample passes through the plane perpendicular to the orbit at
x∗(t), then up to the lowest order in �, this can be estimated
by 〈�x2

‖ (t)〉 divided by the square of the average speed,

〈(�tx∗(t))
2〉 = 1

|F(x∗(t))|2 〈�x2
‖ (t)〉

= 1

�

1

|F(x∗(t))|4 〈F (x∗(t))|M̂(t)|F (x∗(t))〉.

(55)

Using this expression, we define the period fluctuation
〈�T2〉 by

〈�T 2〉 ≡ lim
r→∞

1

r
〈�t2

x∗(rT )〉, (56)

where r is an integer. We obtain the compact expression

〈�T 2〉 = 1

�
〈f1| 2Q̂L(T ) |f1〉 . (57)

The detailed derivation is given in Appendix C.

3. Distribution perpendicular to the periodic orbit

Let n̂⊥,i(t) (2 ≤ i ≤ d) be the unit vectors perpendicular
to the periodic orbit at x∗(t) for 0 ≤ t < T. Note that these
vectors are in the space spanned by the left eigenvectors f i(t)
(2 ≤ i ≤ d) of ÛL(T + t, t), whose eigenvalues are smaller
than 1. The variances in the normal space at x∗(t) for the
steady distribution are given by

〈�x⊥,i(t)�x⊥,j (t)〉∞

≡ lim
r→∞

1

�
〈n̂⊥,i(t)|M̂(rT + t)|n̂⊥,j (t)〉

= 1

�

d∑
�,k=2

〈n̂⊥,i(t)|e�(t)〉
[

λ�λk

1 − λ�λk

〈f�| 2Q̂L(T ) |fk〉

+ 〈f�| 2Q̂L(t) |fk〉
]
〈ek(t)|n̂⊥,j (t)〉. (58)

In the case |λ2| � |λ3|, the terms with λi for i ≥ 3 can be
neglected, thus we obtain the approximate expression

〈�x⊥,i(t)�x⊥,j (t)〉∞

≈ 1

�
〈n̂⊥,i(t)|e2(t)〉

[
λ2

2

1 − λ2
2

〈f2| 2Q̂L(T ) |f2〉

+ 〈f2| 2Q̂L(t) |f2〉
]
〈e2(t)|n̂⊥,j (t)〉. (59)

This means that the distribution extends in the direction of
e2(t) projected on the normal space. In the case of two-
variable system, i.e., d = 2, Eq. (58) becomes simple because
there is only one normal vector n̂(t) ‖ f 2(t); the variance per-
pendicular to the orbit is given by

〈(
�x2

⊥(t)
)〉

∞ = 1

�

1

〈f2(t)|f2(t)〉

×
[

λ2
2

1 − λ2
2

〈f2|2Q̂L(T )|f2〉+〈f2|2Q̂L(t)|f2〉
]
.

(60)

V. NUMERICAL RESULTS FOR BRUSSELATOR

Using the method described in Appendix E, we numer-
ically evaluate our formulas for Brusselator,30 i.e., a simple
model of the chemical oscillation with two chemical species,
X and Y (Table I). From Eqs. (8) and (9), Fi and Qij in the
Hamiltonian are given by

Fx = k1 − k2x + k3x
2y − k4x, (61)

Fy = k2x − k3x
2y, (62)

Qxx = 1

2
(k1 + k2x + k3x

2y + k4x), (63)
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TABLE I. Reaction table for Brusselator.

Transition
ρ Reactions �Xρ �Yρ rates Wρ wρ

1
k1−→ X 1 0 k1� k1

2 X
k2−→ Y −1 1 k2X k2x

3 2X + Y
k3−→ 3X 1 −1 k3

X(X − 1)Y

�2
k3x2y

4 X
k4−→ −1 0 k4X k4x

Qxy = Qyx = −1

2
(k2x + k3x

2y), (64)

Qyy = 1

2
(k2x + k3x

2y). (65)

The function Lij(t) defined by Eq. (26) are given by

Lxx(t) = −k2 + 2k3 x∗(t) y∗(t) − k4, (66)

Lxy(t) = k3 x∗(t)2, (67)

Lyx(t) = k2 − 2k3 x∗(t) y∗(t), (68)

Lyy(t) = −k3 x∗(t)2, (69)

where (x∗(t), y∗(t)) is a rate equation solution. The covariance
matrix M̂(t) of Eq. (36) is evaluated through Eq. (E7) by solv-
ing Eqs. (24) and (25) numerically with proper initial condi-
tions. We also performed Monte Carlo simulations to simulate
the original master equation (4) using the event driven algo-
rithm.

Figure 1 shows time sequences of the concentrations x
and y in sample trajectories for � = 100 and 10 000 along
with the periodic rate equation solution. The molecular fluc-
tuation is large in the smaller system.

Figure 2 shows the time development of the ensemble
of 10 000 data points generated by Monte Carlo simulations
along with the ellipses given by the covariance matrix as

(x − x∗(t))T M̂(t)−1(x − x∗(t)) = 4

�
(70)

with � = 104. The initial point is marked by a blue circle
and the rate equation trajectory is shown by a gray curve in
each plot. One can see that the data point distributions ob-
tained by Monte Carlo simulations are fairly well represented
by the ellipses. The percentages of the samples that fall within
the ellipse are shown in each plots. Except for a few cases
where the distribution is near the curving parts of the trajec-
tory, these percentages are close to 87%, i.e., the percentage
for the two-dimensional Gaussian distribution. The distribu-
tion extends initially transversely across the trajectory, but
eventually along the periodic orbit. The distribution returns
to the Gaussian in the slow moving part of the trajectory even
after it deviates substantially from the Gaussian around the
turning points in the fast moving part.

0

1

2

3

4

5

0  20  40  60  80  100

x,
  y

time

Ω=102

0

1

2

3

4

5

0 1 2 3

y

x

0

1

2

3

4

5

0  20  40  60  80  100

x,
  y

time

Ω=104

0

1

2

3

4

5

0 1 2 3

y

x

0

1

2

3

4

5

0  20  40  60  80  100

x,
  y

time

rate equation

0

1

2

3

4

5

0 1 2 3

y

x

FIG. 1. Time sequences of Brusselator for � = 100 (top), 10 000 (mid-
dle), and the periodic rate equation solution (bottom). In the left panels, the
concentrations x and y are plotted by the red and the green lines respec-
tively as a function of time. In the right panels, the trajectories are plotted
in the x − y plane. The parameters for the system are k1 = 0.5, k2 = 1.5,
k3 = 1.0, and k4 = 1.0, for which the period of the rate equation solution is
T = 15.1631.

The expression of period fluctuation (57) is examined
by the relaxation time τ in the correlation function for the y
variable

Cyy(t) ≡ lim
Tav→∞

1

Tav

∫ Tav

0
[〈y(t + t0)y(t0)〉

− 〈y(t + t0)〉 〈y(t0)〉]dt0. (71)

From simple calculation,26 the correlation function is ex-
pected to decay as

Cyy(t) ∼ Ae−t/τ cos(ωt) (72)

with the relaxation time

τ = T 3

2π2〈�T 2〉 = �
T 3

2π2 〈f1| 2Q̂L(T ) |f1〉
. (73)

Figure 3 shows the correlation functions obtained by Monte
Carlo simulations (the red dotted lines) and the fitting func-
tions (72) (the green lines) for � = 100 and 1000. The
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FIG. 2. Time development of distribution for Brusselator. 10 000 samples of Monte Carlo simulations are plotted by the red dots along with the covariance
matrix M̂ estimated by Eq. (E7); M̂’s are represented by the green ellipses given by δxT M̂−1δx = 4/�, where δxT ≡ (x − x∗(t), y − y∗(t)). The percentages
of the samples that fall within the ellipses are shown in each panel. The gray curves represent the trajectory by the rate equation starting from the initial point
marked by the blue circles. The system parameters are k1 = 0.5, k2 = 1.5, k3 = 1.0, k4 = 1.0, and � = 104. The initial point is (x∗

0 , y∗
0 ) = (0.8, 2.6).
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FIG. 3. Correlation functions Cyy(t). The dotted lines are the results of Monte
Carlo simulations and the green lines are fitting functions by Eq. (72) to
estimate the relaxation time τ . � = 100 (the upper panel) and 1000 (the
lower panel), and the rest of the parameters are the same with those for
Figs. 1 and 2.

relaxation times obtained by the fitting are plotted in Fig. 4
by the red crosses vs. � with the estimate by Eq. (73) (the
green dashed line). They agree well for � � 100.

The variance of the distribution width (60) perpendicular
to the periodic orbit is shown by the green band in Fig. 5 with
the dots that represents the ensemble of 10 000 samples by
Monte Carlo simulations in the steady state. The width of the
green band represents well the local width of the distribution
of the Monte Carlo simulations.

101
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103

101 102 103 104

τ

Ω

FIG. 4. Correlation time vs. �. The red crosses shows the relaxation times
estimated by the Monte Carlo simulations, and the green dashed line shows
the line by Eq. (73). The parameters are the same with those for Figs. 1 and
2, for which T = 15.1631 and 〈f1| 2Q̂L(T ) |f1〉 = 1519.29.
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FIG. 5. Steady state distribution. The red dashed line represents the periodic
orbit by the rate equation, and the green area around it shows the region
within the distance of the square root of the local variance Eq. (60) from
the rate equation orbit. The dots show 10 000 samples by the Monte Carlo
simulations. � = 10 000 and the rest of the parameters are the same with
those for Figs. 1 and 2.

VI. CONCLUDING REMARKS

Using Hamilton-Jacobi method, we have derived a com-
pact formula for the conditional probability distribution by
solving the chemical Fokker-Planck equation within the
Gaussian approximation. The formula is quite general and
given for an arbitrary initial value of x0; it can be applied
not only to stationary states but also to oscillatory states
and transient processes. In the case of stationary states, the
formula reduces to the one obtained by the linear noise
approximation.3, 28, 29 In the case of oscillatory states, we have
derived the expressions for the phase diffusion along the sta-
ble periodic orbit and for the steady distribution in the space
perpendicular to the periodic orbit. We also have developed
the method to evaluate these expressions numerically. Taking
the Brusselator as an example, we have estimated the formu-
las numerically and compared them with the results of the
Monte Carlo simulations; they agree quite well.

The present theory is based on the Hamilton-Jacobi for-
malism developed by Gaspard,26 but the actual distribution
functions that we obtained are different. Gaspard expanded
the distribution function by the time variable, but we obtained
the expression for the distribution function by expanding by
the x variables at a given time t. Applying our formula to the
periodic orbit, we obtain the expressions for both phase dif-
fusion along the orbit and the steady distribution in the space
perpendicular to the orbit. The phase diffusion is directly re-
lated to the temporal fluctuation, and the expression for the
period variance is derived. Our expression for the period vari-

ance is apparently different from the one by Gaspard,26 but
they are shown to be equivalent.

Expressions equivalent to some of our results have been
obtained using slightly different method of expansion.17, 19, 28

Although we kept only the lowest order of 1/� in the fluctu-
ations with the Gaussian approximation, our method is fairly
straightforward and the final expression is rather general and
yet compact. It also allows simple numerical evaluation.

APPENDIX A: GENERAL PROPERTIES OF TIME
EVOLUTION OPERATOR ÛL(t, t0)

In this appendix, various properties of the time evolution
operator ÛL(t, t0) are presented. The time evolution operator
(27) is defined as

ÛL(t, t0) ≡ T exp

[∫ t

t0

dt ′L̂(t ′)
]

≡ 1+
∫ t

t0

dt1L̂(t1)+
∫ t

t0

dt1

∫ t1

t0

dt2 L̂(t1)L̂(t2) + · · ·

= 1+
∫ t

t0

dt1L̂(t1)+
∫ t

t0

dt1

∫ t

t1

dt2L̂(t2)L̂(t1) + · · ·,
(A1)

for the both cases of t ≥ t0 and t ≤ t0. The second equality
gives the definition of the time ordering operator T . From this,
it is easy to see that the operator satisfies

d

dt
ÛL(t, t0) = L̂(t)ÛL(t, t0), (A2)

d

dt0
ÛL(t, t0) = −ÛL(t, t0)L̂(t0), (A3)

ÛL(t0, t0) = 1, (A4)

and the following equalities hold:

ÛL(t, t0) = ÛL(t, t1)ÛL(t1, t0), (A5)

Û−1
L (t, t0) = ÛL(t0, t), (A6)

Û
†
L(t, t0) = Û−L† (t0, t), (A7)

(
Û−1

L (t, t0)
)† = (

Û
†
L(t, t0)

)−1 = Û−L†(t, t0). (A8)

APPENDIX B: RIGHT AND LEFT EIGENVECTORS
FOR Û

For the time evolution operator Û over the period T, the
expressions for the right and left eigenvectors, |e1〉 and 〈f1|,
with the eigenvalue λ1 = 1 can be obtained.

It is easy to see that the right eigenvector of λ1 is given
by

|e1〉 = |F (x∗
0)〉 (B1)

because from Eqs. (14) and (26),

d

dt
Fi(x∗(t)) = Lij (t)Fj (x∗(t)), (B2)
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that gives

|F (x∗
0)〉 = |F (x∗(T ))〉 = Û |F (x∗

0)〉. (B3)

The corresponding left eigenvector 〈f1| can be also ob-
tained as follows. Consider the periodic orbit (x∗(t ; E),
p∗(t ; E)) outside the p = 0 subspace, where the value of
Hamiltonian E is non-zero. Suppose that it is an analytic func-
tion of E with (x∗(t ; 0), p∗(t ; 0)) = (x∗(t), 0), and its period
is given by T(E) as a function of E.

Let us define the deviations

δx∗(t) ≡ x∗(t ; δE) − x∗(t), δ p∗(t) ≡ p∗(t ; δE) (B4)

for small δE. These satisfy Eqs. (24) and (25), thus the formal
solutions are given by Eqs. (28) and (29).

Within the first order of δE, δ p∗(0) is given by

δ p∗(0) = p∗(T (δE); δE) ≈ p∗(T (0); δE) = δ p∗(T ), (B5)

where we have used p∗(t ; 0) = 0 and T(0) = T. Using the
formal solution (29), the last expression is written as

δ p∗(T ) = Û
†
L(0, T )δ p∗(0) = (Û−1)†δ p∗(0), (B6)

which shows that 〈δp∗(0)| is the left eigenvector in the braket
notation,

〈δp∗(0)|Û = 〈δp∗(0)|. (B7)

From the normalization (45) with the right eigenvector (B1),
we have

〈f1| = 〈δp∗(0)|
δE

= ∂ 〈p∗(0; E)|
∂E

∣∣∣∣
E=0

(B8)

because

δE = 〈δp∗(0)|F (x∗
0)〉 (B9)

from Eq. (7) within the lowest order of δE.

APPENDIX C: COVARIANCE MATRIX M̂(t + rT )
AFTER MANY PERIODS OF T

We derive the expression for the covariance matrix
M̂(rT + t) for a large integer r in the case of the periodic
orbit x∗(t) with the period T. With the expression, we obtain
Eq. (57) for the period fluctuation and Eq. (58) for the fluctu-
ations perpendicular to the orbit in the steady distribution.

For an integer r and 0 ≤ t < T, we can rewrite Eq. (36) as

M̂(rT + t) = ÛL(rT + t, 0)2Q̂L(rT + t)Û †
L(rT + t, 0)

= ÛL(rT + t, 0)

[∫ rT +t

0
dt ′ÛL(0, t ′)2Q̂(t ′)Û †

L(0, t ′)
]

Û
†
L(rT + t, 0)

= ÛL(rT + t, 0)

[ r−1∑
s=0

∫ T

0
dt ′ÛL(0, sT + t ′)2Q̂(t ′)Û †

L(0, sT + t ′)

+
∫ t

0
dt ′ÛL(0, rT + t ′)2Q̂(t ′)Û †

L(0, rT + t ′)
]
Û

†
L(rT + t, 0)

= ÛL(rT + t, 0)

[ r−1∑
s=0

ÛL(0, sT )

(∫ T

0
dt ′ÛL(0, t ′)2Q̂(t ′)Û †

L(0, t ′)
)

Û
†
L(0, sT )

+ ÛL(0, rT )

(∫ t

0
dt ′ÛL(0, t ′)2Q̂(t ′)Û †

L(0, t ′)
)

Û
†
L(0, rT )

]
Û

†
L(rT + t, 0)

= ÛL(t, 0)

[ r−1∑
s=0

Û r−s 2Q̂L(T )(Û r−s)† + 2Q̂L(t)

]
Û

†
L(t, 0)

= ÛL(t, 0)

[ r∑
s=1

Û s 2Q̂L(T )(Û s)† + 2Q̂L(t)

]
Û

†
L(t, 0), (C1)

where we have used Q̂(t + T ) = Q̂(t).
For t = 0, ÛL(t, 0) = 1 and Q̂L(t) = 0, thus using the spectral representation Eq. (47) into this, we have

1

r
〈e1| M̂(rT ) |e1〉 = 1

r

r∑
s=1

〈e1|
(∑

i

|ei〉 λs
i 〈fi |

)
2Q̂L(T )

⎛
⎝∑

j

|fj 〉λs
j 〈ej |

⎞
⎠ |e1〉

→ 〈e1|e1〉 〈f1| 2Q̂L(T ) |f1〉 〈e1|e1〉 (C2)
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as r → ∞ because |λi| < 1 for i ≥ 2. From Eq. (56) with
Eq. (B1), this gives

〈
�T 2

〉 = 1

�
〈f1| 2Q̂L(T ) |f1〉 , (C3)

which is Eq. (57).
The variances to the direction n⊥,i(t) normal to the orbit

at x∗(t) can be calculated as

〈�x⊥,i(t)�x⊥,j (t)〉

= 1

�
〈n⊥,i(t)|M̂(t + rT )|n⊥,j (t)〉

= 1

�

d∑
�,k=2

〈n⊥,i(t)|e�(t)〉

×
[

r∑
s=1

λs
�〈f�|2Q̂L(T )|fk〉λs

k + 〈f�|2Q̂L(t)|fk〉
]

×〈ek(t)|n⊥,j (t)〉

r→∞−→ 1

�

d∑
�,k=2

〈n⊥,i(t)|e�(t)〉
[

λ�λk

1 − λ�λk

〈f�|2Q̂L(T )|fk〉

+ 〈f�|2Q̂L(t)|fk〉
]
〈ek(t)|n⊥,j (t)〉, (C4)

which is Eq. (58). The matrix elements in Eqs. (C3) and (C4)
can be numerically estimated by Eq. (E8),

〈f�| 2Q̂L(t) |fk〉 = −〈δp(t ; f�)|δpx(t ; fk)〉. (C5)

APPENDIX D: EQUIVALENCE OF EQ. (57)
WITH GASPARD’S EXPRESSION

Gaspard25, 26 has given the correlation time in terms of the
energy derivative of the period T(E). We show his expression
is equivalent with our expression Eq. (57).

As in Appendix B, the deviation of the periodic orbit
δx∗(t) in Eq. (B4) at t = 0 is expressed within the lowest
order of δE as

δx∗(0) = x∗(T (δE); δE) − x∗(T (0); 0)

≈ δx∗(T (0)) + F(x∗
0)T ′(0)δE, (D1)

where T′(E) denotes the E derivative of T(E). Again, using the
formal solution (28) with the notation (43), we have

δx∗(T ) = Û (δx∗(0) − 2Q̂L(T )δ p∗(0)). (D2)

By inserting this into Eq. (D1) with Eqs. (B1) and (B8), we
have

(1 − Û )|δx∗(0)〉 = (−Û2Q̂L(T ) |f1〉 + |e1〉 T ′(0))δE (D3)

in the braket notation. Taking the inner product of this with
〈f1|, i.e., the left eigenvector of Û with the eigenvalue 1, this
gives

T ′(0) = 〈f1| 2Q̂L(T ) |f1〉 , (D4)

therefore, from Eq. (57) we obtain

〈�T 2〉 = 1

�

∂T

∂E

∣∣∣
E=0

. (D5)

With Eq. (73), this is equivalent to Gaspard’s expression.

APPENDIX E: FORMULAS FOR NUMERICAL
ESTIMATE

In this appendix, we derive formulas for numerical es-
timate of the distribution function. In the braket notation,
Eqs. (28) and (29) are expressed as

|δx(t)〉 = ÛL(t, 0)
[|δx(0)〉 − 2Q̂L(t) |δp(0)〉] , (E1)

〈δp(t)| = 〈δp(0)| ÛL(0, t). (E2)

The components of the covariance matrix M̂(t) of
Eq. (36) and Q̂L(t) of Eq. (30) can be numerically estimated
easily by solving these equations with proper initial condi-
tions. Let us first introduce the following notations for the so-
lutions of Eqs. (E1) and (E2):

|δxx(t ; δx0)〉 ≡ ÛL(t, 0) |δx0〉 , (E3)

∣∣δpx(t ; δp0)
〉 ≡ −ÛL(t, 0)2Q̂L(t) |δp0〉 , (E4)

〈δp(t ; δp0)| ≡ 〈δp0| ÛL(0, t). (E5)

Equation (E3) may be interpreted as the deviation of x
from x∗ by the rate equation with the initial deviation δx0

within the p = 0 subspace. Equations (E4) and (E5) are
the deviation of x and p, respectively, with the initial de-
viation δ p0. They can be obtained numerically by solv-
ing Eqs. (24) and (25) with the initial conditions (δx, δ p)
= (δx0, 0) or (δx, δ p) = (0, δ p0) at t = 0.

Let Î be the identity matrix and this may be expressed as

Î =
∑

α

|α〉 〈α| (E6)

by a complete set of orthonormal base vectors |α〉. Then, a
matrix element 〈i|M̂(t)|j 〉 of Eq. (36) can be put in the form

〈i| M̂(t) |j 〉 =
∑

α

〈i| ÛL(t, 0)2Q̂L(t) |α〉 〈α| Û †
L(t, 0) |j 〉

=
∑

α

−〈i|δpx(t ; α)〉 〈δxx(t ; α)|j 〉 , (E7)

where 〈δxx(t; α)| is a transposed column vector of |δxx(t;
α)〉. Similarly, the matrix elements of Q̂L(t) can be expressed
as

〈i| 2Q̂L(t) |j 〉 = 〈i| ÛL(0, t)ÛL(t, 0)2Q̂L(t) |j 〉
= − 〈

δp(t ; i)|δpx(t ; j )
〉
. (E8)

With these formulas, we can evaluate the matrix elements nu-
merically simply by solving the ODE’s, i.e., Eqs. (24) and
(25) with proper initial conditions.
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