
2022/2, Hiizu Nakanishi

Dynamics of a Rolling Coin

Let us consider the motion of a coin rolling on a horizontal table without slipping. This

“rolling without slipping” constraint cannot be expressed as a function of coordinates,

and is called a non-holonomic constraint, which makes the coin’s motion complex.

The parameters characterizing the system are the mass M and the moment of inertia

tensor Î about the center of mass, the radius of the coin a, and the gravitational constant

g.

1 Equations of Motion

With the center of mass velocity v and the angular velocity ω of the coin, the equations

of motion are

M
dv

dt
=Mg +R Translational motion (1)

d

dt

(
Îω
)
= c×R Rotational motion (2)

These are two vector equations. Here, g is the gravitational acceleration vector of mag-

nitude g pointing vertically downward, R is the reaction force from the floor, and the

vector c points from the center of the coin to the contact point with the floor.

The constraint of rolling without slipping relates the center of mass velocity v and the

angular velocity ω as follows:

v = −ω × c. (no-slip condition) (3)

This cannot be expressed by the relation of coordinates and angles, so it is a non-holonomic

constraint.

By eliminating R from Eqs. (1) and (2), and using Eq. (3) to express v in terms of ω,

the equation of motion becomes

d

dt

(
Îω
)
=Mc×

(
− d

dt

(
ω × c

)
− g

)
. (4)
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2 Coordinate Systems

Here, we introduce two coordinate systems, xyz and XY Z.

(i) xyz: a inertial coordinate system. The horizontal floor is the z-x plane, and the

vertical upward direction is taken as the y-axis.

(ii) XY Z: the origin at the center of the coin, with the Z-axis perpendicular to the

coin, X-axis lies in the horizontal plane, and the Y -axis is upward in the coin plane.

The basis vectors, i.e., the unit vectors parallel to each axis, are denoted by(
ex, ey, ez

)
,

(
eX , eY , eZ

)
, (5)

where eX and eY are defined as

eX ≡ ey × eZ

|ey × eZ |
, eY ≡ eZ × eX . (6)

Furthermore, we define three angles (θ, ϕ, ψ) to represent the orientation of the coin.

That is, when (θ, ϕ, ψ) = 0, the coin lies in the xy-plane, and the XY Z axes are parallel

to the xyz axes. The coin in orientation (θ, ϕ, ψ) is obtained from the (0, 0, 0) orientation

by

1. rotating by ψ around the z-axis,
2. rotating by θ around the x-axis,
3. rotating by ϕ around the y-axis,

in that order.

図 1: Two coordinate systems xyz and XY Z, and three angles (θ, ϕ, ψ) that represent the

coin’s orientation (left figure). View from the Z axis (center) and the −X axis (right).

When (θ, ϕ) = 0, the two coordinate systems coincide.
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Then, the relationship between basis vectors can be expressed by the rotation matrix

R̂(θ, ϕ) ≡


cosϕ, 0, − sinϕ

sin θ sinϕ, cos θ, sin θ cosϕ

cos θ sinϕ, − sin θ, cos θ cosϕ

 = R̂(x, θ)R̂(y, ϕ) (7)

R̂t(θ, ϕ) =


cosϕ, sin θ sinϕ, cos θ sinϕ

0, cos θ, − sin θ

− sinϕ, sin θ cosϕ, cos θ cosϕ

 = R̂−1(θ, ϕ) (8)

as follows: 
eX

eY

eZ

 = R̂(θ, ϕ)


ex

ey

ez

 ,


ex

ey

ez

 = R̂t(θ, ϕ)


eX

eY

eZ

 (9)

Here, R̂(x, θ) and R̂(y, ϕ) represent the rotation matrices about the x- and y-axes by

angles θ and ϕ, respectively, namely

R̂(x, θ) =


1, 0, 0

0, cos θ, sin θ

0, − sin θ, cos θ

 , R̂(y, ϕ) =


cosϕ, 0, − sinϕ

0, 1, 0

sinϕ, 0, cosϕ

 . (10)

Let Ω be the angular velocity vector of the XY Z coordinate system. Then, Ω is given

by the angular velocity vector of the coin ω as

Ω = ϕ̇ey + θ̇eX , ω = ϕ̇ey + θ̇eX + ψ̇eZ . (11)

3 Equations of Motion in the XY Z System

We express the equations of motion in the basis of the XY Z coordinate system. For a

vector u, the time derivative of its components in the XY Z frame is defined as(
du

dt

)
XY Z

≡ duX
dt

eX +
duY
dt

eY +
duZ
dt

eZ .

Since the XY Z frame rotates with angular velocity Ω, the time derivative of u is given

by
du

dt
=

(
du

dt

)
XY Z

+Ω× u.

In the XY Z system, the inertia tensor is given by

Î =


1
4
Ma2, 0, 0

0, 1
4
Ma2, 0

0, 0, 1
2
Ma2


XY Z

. (12)
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The contact vector c and the gravitational acceleration vector g are

c = −aeY , g = −gey.

Therefore, the equation of motion (4) becomes

Î

(
dω

dt

)
XY Z

+Ω×
(
Îω
)
=Mc×

(
−
(
dω

dt

)
XY Z

× c+Ω×
(
− ω × c

)
+ gey

)
.

Rearranging this, we obtain

Î

(
dω

dt

)
XY Z

+Ma2
((

dω

dt

)
XY Z

− dωY

dt
eY

)
= −Ω×

(
Îω
)
−Ma2

(
ΩYω × eY +

g

a
eY × ey

)
.

The angular velocity ω is related with the angular velocity of the XY Z coordinate system

Ω as

ω = Ω+ ψ̇eZ ; i.e. ωX = ΩX , ωY = ΩY , ωZ = ΩZ + ψ̇. (13)

Expanding the components of the equation of motion in the XY Z coordinate system, we

obtain

(
IX +Ma2

)dωX

dt
= −

(
IZ +Ma2

)
ωY ωZ−IXω2

Y tan θ+Ma2
g

a
sin θ (14)

IX
dωY

dt
= +IXωXωY tan θ + IZωZωX (15)(

IZ +Ma2
)dωZ

dt
= +Ma2ωXωY (16)

Here, IX = 1
4
Ma2, IZ = 1

2
Ma2. From Eq. (11), the angular velocity ω can be expressed

by the orientation angles (θ, ϕ, ψ) as

ωX = θ̇, ωY = ϕ̇ cos θ, ωZ = ψ̇ − ϕ̇ sin θ,

from which we obtain

dθ

dt
= ωX , (17)

dϕ

dt
=

1

cos θ
ωY , (18)

dψ

dt
= ωZ + tan θ ωY . (19)
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4 Physical Quantities

Center of Mass Velocity and Position:

v = −ω ×
(
− aeY

)
= a
(
− ωZeX + ωXeZ

)
ẋ = vx = a

(
− ωZ cosϕ+ ωX cos θ sinϕ

)
ẏ = vy = −aωX sin θ

ż = vz = a
(
ωZ sinϕ+ ωX cos θ cosϕ

)
Contact Point with Floor:

rc = r + c ; xc = x−a sin θ sinϕ, zc = z−a sin θ cosϕ{
ẋc = −a

(
tan θωY + ωZ

)
cosϕ = −aψ̇ cosϕ

żc = +a
(
tan θωY + ωZ

)
sinϕ = +aψ̇ sinϕ

⇒ vc = a|ψ̇|

Energy:

E =
1

2
Mv2 +

1

2
ωtÎω +Mg(−c) · ey =

1

2
Mv2 +

1

2
ωtÎω +Mga cos θ

=
1

2
Ma2

(
ω2
X + ω2

Z

)
+

1

2

(
IX(ω

2
X + ω2

Y ) + IZω
2
Z

)
+Mga cos θ

Reaction Force:

R =M
dv

dt
+Mgey =Ma

d

dt

(
ω × eY

)
+Mgey

=Ma
(
−
(
ω̇Z − ωXωY

)
eX −

(
ω2
X − ωY ωZ tan θ

)
eY +

(
ω̇X + ωY ωZ

)
eZ

)
+Mgey

Rx =Ma
(
−
(
ω̇Z − ωXωY

)
cosϕ−

(
ω2
X − ωY ωZ tan θ

)
sin θ sinϕ+

(
ω̇X + ωY ωZ

)
cos θ sinϕ

)
Ry =Ma

(
−
(
ω2
X − ωY ωZ tan θ

)
cos θ −

(
ω̇X + ωY ωZ

)
sin θ

)
+Mg

Rz =Ma
((
ω̇Z − ωXωY

)
sinϕ−

(
ω2
X − ωY ωZ tan θ

)
sin θ cosϕ+

(
ω̇X + ωY ωZ

)
cos θ cosϕ

)

F ≡
√
R2

x +R2
y =Ma

√(
ω̇Z − ωXωY

)2
+
(
ω2
X sin θ − ω̇Z cos θ − ωY ωZ

cos θ

)2
N ≡ Ry = −Ma

(
ω2
X cos θ + ω̇X sin θ

)
+Mg
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Coin Orientation: When (θ, ϕ, ψ) = 0, the coin lies in the x-z plane and the Z-axis

points opposite direction to the y-axis. To orient the coin to (θ, ϕ, ψ) from this state, the

following rotations should be performed in this sequence:

1. rotating by ψ around the z-axis,

2. rotating by θ around the x-axis,

3. rotating by ϕ around the y-axis,

The rotation operator R̂ of quaternion for a rotation of angle θ about axis n is

R̂(n, θ) = cos
θ

2
+ n̂ sin

θ

2
; n̂ ≡ nxî+ ny ĵ + nzk̂

Therefore, R̂ is given by

R̂ =R̂(ey, ϕ)R̂(ex, θ)R̂(ez, ψ),

R̂(ez, ψ) = cos
ψ

2
+ k̂ sin

ψ

2
,

R̂(ex, θ) = cos
θ

2
+ î sin

θ

2
,

R̂(ey, ϕ) = cos
ϕ

2
+ ĵ sin

ϕ

2
.

A quaternion is an extension of complex numbers with the units î, ĵ, k̂, and 1, which

follow the multiplication rules

î2 = ĵ2 = k̂2 = −1, î ĵ = −ĵ î = k̂, ĵ k̂ = −k̂ ĵ = î, k̂ î = −î k̂ = ĵ.
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5 Steady States and Stability Analysis

We look into steady solutions with the cocnstant angular momentum, and analyze

their stability. To simplify the equations, we adopt a dimensionless unit system with

M = a = g = 1, where

IX = IY =
1

4
, IZ =

1

2
,

and the equations of motion become
ω̇X = −6

5
ωY ωZ − 1

5
ω2
Y tan θ + 4

5
sin θ

ω̇Y = ωXωY tan θ + 2ωZωX

ω̇Z = 2
3
ωXωY


θ̇ = ωX

ϕ̇ = ωY
1

cos θ
ψ̇ = ωZ + ωY tan θ

,

The steady solutions satisfy
0 = −6

5
ωY ωZ − 1

5
ω2
Y tan θ + 4

5
sin θ

0 = ωXωY tan θ + 2ωZωX

0 = 2
3
ωXωY

,

from which, we obtain two conditions:

1. ωX = ωY = θ = 0, ωZ = const.

2. ωX = 0,
(
ωZ , θ

)
= const., ωY = f±(ωZ , θ) ≡

1

tan θ

(
−3ωZ ±

√
9ω2

Z + 4
sin2 θ

cos θ

)

The function f±(ωZ , θ) has

f±(ωZ , θ) = −f∓(−ωZ , θ) = f∓(−ωZ ,−θ)

symmetry, so we may consider only ωZ , θ > 0.

Steady State 1: Straight Rolling Motion

ωZ = ωZ,0 = const., ωX = ωY = θ = 0

Steady State 2: Spinning with Stationary Center of Mass, and F = 0, R = −Mg

ωX = ωZ = 0, ωY = 2
√

cos θ0, θ = θ0, ϕ̇ =
2√

cos θ0

Radius of the contact point trajectory: RC

RC =
ψ̇

ϕ̇
= sin θ0
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Steady State 3: Circular Motion

ωX = 0, ωZ = ωZ,0, θ = θ0, ωY = ωY,0 ≡
3ωZ,0

tan θ0

(
−1±

√
1 +

4

9

tan θ0
ω2
Z,0

sin θ0

)

Radius of COM trajectory: RG,

RG =

∣∣∣∣ωZ

ϕ̇

∣∣∣∣ = ∣∣∣∣ωZ,0

ωY,0

cos θ0

∣∣∣∣ = 3

4

ω2
Z,0

tan θ0

(√
1 +

4

9

tan θ0
ω2
Z,0

sin θ0 ± 1

)

Radius of the contact point trajectory: RC

RC =

∣∣∣∣∣ ψ̇ϕ̇
∣∣∣∣∣ =

∣∣∣∣ωZ,0

ωY,0

cos θ0 + sin θ0

∣∣∣∣
=

∣∣∣∣∣34 ω2
Z,0

tan θ0

(√
1 +

4

9

tan θ0
ω2
Z,0

sin θ0 ± 1

)
± sin θ0

∣∣∣∣∣
Steady State 4: Large Circular Motion

ωX = 0, ωZ = ωZ,0, θ = θ0 ≪ 1

,

ωY = ωY,0 ≡
3ωZ,0

tan θ0

(√
1 +

4

9

tan θ0
ω2
Z,0

sin θ0 − 1

)
≈ 2

3

sin θ0
ωZ,0

RG =
3

4

ω2
Z,0

tan θ0

(√
1 +

4

9

tan θ0
ω2
Z,0

sin θ0 + 1

)
≈ 3

2

ω2
Z,0

sin θ0
≈ ωZ,0

ωY,0

5.1 Stability of Steady State 1:

ωZ = ωZ,0 = const., ωX = ωY = θ = 0

Let small deviations from this state be

ωX = δωX , ωY = δωY , ωZ = ωZ,0 + δωZ , θ = δθ

Then, 
δω̇X = −6

5
ωZ,0δωY + 4

5
δθ

δω̇Y = 2ωZ,0δωX

δω̇Z = 0


δθ̇ = δωX

δϕ̇ = δωY

ψ̇ = ωZ,0

Assuming (δωX , δωY , δθ) = (AX , AY , Aθ)e
λt, we have

λA = Λ̂A ; Λ̂ ≡


0, −6

5
ωZ,0,

4

5
2ωZ,0, 0, 0

1, 0, 0
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Characteristic equation:

λ

(
λ2 +

12

5
ω2
Z,0 −

4

5

)
= 0

Eigenvalues:

λ = 0, ±
√

4

5

(
1− 3ω2

Z,0

)
,

from which the critical angular velocity is ωc ≡ 1/
√
3 ≈ 0.577.

Stability condition: Unstable if ωZ,0 < ωc, and neutrally stable if ωZ,0 ≧ ωc.

Neutral stability means that orbits of arbitrary radius exist, but with no restoring force,

so even small perturbations result in transition to another circular trajectory.

5.2 Stability of Steady State 2:

Assume constants ωX = 0, and (ωY , ωZ , θ) ̸= 0

IXω
2
Y tan θ +

(
IZ +Ma2

)
ωY ωZ −Ma2

g

a
sin θ = 0

satisfies the condition. Let the solution be:

ωX = δωX , ωY = ωY,0 + δωX , ωZ = ωZ,0 + δωX , θ = θ0 + δθ

Assuming:
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6 Case of a Ring

Moments of inertia of a ring with outer radius a and inner radius b:

IX = IY =
1

4
M(a2 + b2), IZ =

1

2
M(a2 + b2)
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