2022/2, Hiizu Nakanishi
Dynamics of a Rolling Coin

Let us consider the motion of a coin rolling on a horizontal table without slipping. This
“rolling without slipping” constraint cannot be expressed as a function of coordinates,

and is called a non-holonomic constraint, which makes the coin’s motion complex.

The parameters characterizing the system are the mass M and the moment of inertia

tensor I about the center of mass, the radius of the coin a, and the gravitational constant

g.

1 Equations of Motion

With the center of mass velocity v and the angular velocity w of the coin, the equations

of motion are

d
M d—’; =Mg+R Translational motion (1)

d /-
pr ([w) =cxR Rotational motion (2)

These are two vector equations. Here, g is the gravitational acceleration vector of mag-
nitude g pointing vertically downward, R is the reaction force from the floor, and the

vector ¢ points from the center of the coin to the contact point with the floor.

The constraint of rolling without slipping relates the center of mass velocity v and the

angular velocity w as follows:
v=—-wXec. (no-slip condition) (3)

This cannot be expressed by the relation of coordinates and angles, so it is a non-holonomic

constraint.

By eliminating R from Egs. (0) and (#), and using Eq. (B) to express v in terms of w,

the equation of motion becomes

8 (1) = trex (e —g). 0



2 Coordinate Systems

Here, we introduce two coordinate systems, ryz and XY Z.
(i) zyz: a inertial coordinate system. The horizontal floor is the z-z plane, and the
vertical upward direction is taken as the y-axis.

(ii) XY Z: the origin at the center of the coin, with the Z-axis perpendicular to the

coin, X-axis lies in the horizontal plane, and the Y-axis is upward in the coin plane.

The basis vectors, i.e., the unit vectors parallel to each axis, are denoted by

(exa €y, ez)a (eX7 €y, eZ)7 (5)

where ey and ey are defined as

e, X ez

ex = ey =ey X ex. (6)

|ey><eZ|,

Furthermore, we define three angles (0, ¢,1) to represent the orientation of the coin.
That is, when (6, ¢, %) = 0, the coin lies in the zy-plane, and the XY Z axes are parallel
to the zyz axes. The coin in orientation (6, ¢, ) is obtained from the (0,0, 0) orientation
by

1. rotating by 1 around the z-axis,

2. rotating by 6 around the x-axis,

3. rotating by ¢ around the y-axis,

in that order.
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1: Two coordinate systems zyz and XY Z, and three angles (6, ¢, 1) that represent the

coin’s orientation (left figure). View from the Z axis (center) and the —X axis (right).

When (60, ¢) = 0, the two coordinate systems coincide.



Then, the relationship between basis vectors can be expressed by the rotation matrix

cos ¢, 0, —sin¢
R(0,6)= | sinfsin ¢, cosf, sinfcos¢ | = R(z,0)R(y, $) (7)
cosfsin¢, —sinf, cosfcoso

cos ¢, sinfsing, cosfsing
R0, ¢) = 0, cos 6, —sinf = R0, 9) (8)

—sin¢, sinfcos@, cosbcoso

as follows:
ex e, €y €x
ey | =R6,9) | e |, e, | =R0,9)]| ey (9)
ey e, e, €z

Here, R(x,@) and f?(y,@ represent the rotation matrices about the z- and y-axes by

angles 6 and ¢, respectively, namely

1, 0, 0 cosgp, 0, —sing
R(z,0)=| 0, cos®, sind |, Ry o) = 0, 1, 0 : (10)
0, —sin#, cosé sing, 0, cos¢

Let € be the angular velocity vector of the XY Z coordinate system. Then, €2 is given

by the angular velocity vector of the coin w as

Q:$6y+éex, w:¢6y+éex+¢ez. (11)

3 Equations of Motion in the XY Z System

We express the equations of motion in the basis of the XY Z coordinate system. For a
vector u, the time derivative of its components in the XY Z frame is defined as

d_u :du_Xe _f_du_ye _’_du_Ze
dt ) yyy  dt O dt T dt 7

Since the XY Z frame rotates with angular velocity €2, the time derivative of u is given
by

d_u = (d_u) + QX u.
dt dt ) vy,
In the XY Z system, the inertia tensor is given by
%LMaQ, 0, 0
I= 0, iMa?% 0 . (12)
0, 0, %M(IQ



The contact vector ¢ and the gravitational acceleration vector g are
c= —aey, g = —ge,.

Therefore, the equation of motion (d) becomes

f(d—w> —|—Q><(fw):Mc><(—<d—w) ><c+Q><(—w><c)+gey).
dt ) xyz dt ) xyz

Rearranging this, we obtain

~ [ dw dw dwy A .
(dt)xyz+ ¢ ((dt>XYZ dt €y) X(w) a waey—i-aeyxey

The angular velocity w is related with the angular velocity of the XY Z coordinate system

Q as
w:Q+@/}eZ; ie. wX:Qx, wY:Qy, OJZ:QZ—F#J. (13)

Expanding the components of the equation of motion in the XY Z coordinate system, we

obtain
oy dwx 2 2 29 .
(IX + Ma )W = —(IZ + Ma )wwa—IXwYtan9+Ma =sin# (14)
a
d,
Ix% :—i—IXwaytan@—i—IZwaX (15)
d,
(]Z + Ma%% = +Mdalwxwy (16)

Here, Iy = {Ma?, Iy = $Ma®. From Eq. (I0), the angular velocity w can be expressed

by the orientation angles (6, ¢, 1) as
wy =6, wy = ¢cosh, wy =1 — ¢sinb,

from which we obtain

do

do 1

o 1
dt  cosf " (18)
d

d—zf =wyz + tanfwy. (19)




4 Physical Quantities

Center of Mass Velocity and Position:

V=—w X (—aey) :a(—wzex+wxez)
T =0, = a(—wzcos¢+wxcosesin¢)
Y =1, = —awx sin 0

Z=wv, = a(wzsin¢+wx cos@cosgzﬁ)

Contact Point with Floor:

re=r+c; T, =1x—asinfsin¢, 2z.= z—asinfbcosp

Lo = —a(tan Owy —l—wz) cos ¢ = —azﬂ cos ¢ .
Ve = CL|w|

Z. = +a(tan Owy + wz) sin ¢ = +a1) sin ¢
Energy:
1 2 1 ts 1 2 1 t7
E:§MU + 5w Iw+ Mg(—c) - e, :§MU + 5w ITw + Mgacos®

= lMaz(wgf + w%) +

1
5 —<IX(w§(+w%)+IZw%> + Mgacosf

2

Reaction Force:

d d
R =M=+ Mge, = Ma(w x ey) + Mg,

= Ma( — (wz — way)eX — (w?c — WyWy tanQ)ey + (c'uX +wywz)ez) + Mgye,

=y
I

- Ma( - (wz - chuy) cos ¢ — (wg( — Wywyz tan&) sin 6 sin ¢ + (cLJX + wywz) cos 0 sin (;5)

=
I
<

a( — (wg( — wywy tan 6’) cos O — (o'JX + waZ) sin@) + Mg

=
I

. Ma((wz - way) sin ¢ — (wg( — wywyz tan 9) sin # cos ¢ + (dJX + wywz) cos 8 cos qb)

2
=,/R:+ R2 —Ma\/ wZ—waY 2y (wg(sinﬁ—wzcosﬁ— wa;)
cOS

N=R, = —Ma(wX C089+wxsm«9> + Mg



Coin Orientation: When (6, ¢,%) = 0, the coin lies in the x-z plane and the Z-axis
points opposite direction to the y-axis. To orient the coin to (6, ¢, ) from this state, the

following rotations should be performed in this sequence:

1. rotating by 1 around the z-axis,
2. rotating by 6 around the z-axis,

3. rotating by ¢ around the y-axis,

The rotation operator R of quaternion for a rotation of angle ¢ about axis n is

R 0 0 5 A >
R(n,0) ICOS§+ﬁSin§; n=ngi +nyj +n.k

Therefore, Ris given by

A

R :R(ey, (b)R(em’ Q)R(ezv ¢),

R(e., ) = cos v + ksin %,
2 2
. 0 0

R(e;,0) = — 4 isi )
(es,0) COSQ—}—ZSIH2

R(e,, ¢) = cos g +j’sin%.

A quaternion is an extension of complex numbers with the units 1, j’, lz:, and 1, which

follow the multiplication rules

Bojoitool,  ijo—jizh jh=-kj=i hi--ik=}



5 Steady States and Stability Analysis

We look into steady solutions with the cocnstant angular momentum, and analyze
their stability. To simplify the equations, we adopt a dimensionless unit system with

M =a =g =1, where

1 1
[X:IY:Za [Z:§a
and the equations of motion become
wx = —Swywz — twi tanf + % sind 0 =wx
. 1

Wy = wxwy tanl + 2w wx ¢ =uwy ;
_ ) ‘ cos
Wz = 3WxWy Y = wy + wytand

The steady solutions satisfy

0 = —gwng — %w}% tanf + %siné’
0 =wxwytand + 2wzwyx ,
0 2

= 3WxWy

from which, we obtain two conditions:

1. wxy =wy =0 =0, wy= const.

2. wy =0, (wz, )= const., wy = f(wz,0)= 1 —3w i\/m
T S Cor T 777 tan6 d d cos 6

The function f*(wy, ) has

fi(wZ7 8) = _f:F<_wZ’ '9) = f:F(_w27 _9)
symmetry, so we may consider only wyz, 0 > 0.
Steady State 1: Straight Rolling Motion

Wy =wgzo =const.,, wy =wy =0=0

Steady State 2: Spinning with Stationary Center of Mass, and F =0, R = —Mg

. 2
wy =wz =0, wy =24/cosby, 6O6=0, gb:\/m
0

Radius of the contact point trajectory: Re

Rc = % = sin%



Steady State 3: Circular Motion

3 4 tan 6
(JJXZO, Wz = Wz, 9:90, Wy = Wy,0 = Wz0 (—li\/1+§ o sin90>

2
tan 6y w7

Radius of COM trajectory: Rg,

Wz

3 w3 4 tanf
_Z = — Z,0 1—|———a121 0 sin@o +1
b 4 tan 6y 9 wz,

Radius of the contact point trajectory: Re

@b‘:

wWz.0
— cosf,
Wy,0

Re =

wz.0 .
—= cos fy + sin by
Wy,0

Rczg

3 wi, 4 tanf, . .
= |- —= 1+ - 0o+ 1| £sinb
1 tan 6, <\/ + 9 w%,o sin sin 6y

Steady State 4: Large Circular Motion

wX:O, wzzwz,o, 9:90<<1

3 4 tan 6, 2 sin @
Wy = Wy, = w20 <\/1+— anOsin%—l)z S Yo

tan 6 9 wi, 3 Wz,0
3 Wi 4 tanf, | 3 Who | wzo
Re = - : 14+ - sinfy +1 | ~ - 20— ~ 2=
7 4 tan 6, 9 wy, 0 2 sinfy  wyy

5.1 Stability of Steady State 1:

Wz =wzo =const., wxy=wy =60=0

Let small deviations from this state be

wx :§wx, Wy Iéwy, Wz :wz,0+5wz, 0 = o0

Then,
dx = —Swyodwy + 260 00 = dwy
Sy = 2z odwx 5p = dwy
Sy =0 P =wgzg

Assuming (dwy, dwy, 60) = (Ax, Ay, Ag)e, we have

6 4

0 I _

R X ) 5CL)Z’(], 5
M=AA: A=, 0. 0
1, 0, 0



Characteristic equation:

12 4
)\ ()\2 E(JJ%,O — 5) = 0

(1 - 3“%,0)7

from which the critical angular velocity is w, = 1/ V3 = 0.577.

Eigenvalues:

A=0, =+

Ot W~

Stability condition: Unstable if wzy < w., and neutrally stable if wzo = w,.
Neutral stability means that orbits of arbitrary radius exist, but with no restoring force,

so even small perturbations result in transition to another circular trajectory.

5.2 Stability of Steady State 2:

Assume constants wy = 0, and (wy,wyz,0) # 0
Ixwy tan 6 + (IZ + MaQ)wwa — Man sind =0
a
satisfies the condition. Let the solution be:

wx :5(,4.))(, nywY’o—i-&U)(, wZ:pr—’—(swx, 9:60—1-59

Assuming;:



6 Case of a Ring

Moments of inertia of a ring with outer radius a and inner radius b:

1 1
[X:IYZZLM(G2+[)2)’ IZ:§M<CL2+b2)

10
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