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Feynman’s Dining Hall Dynamics

Richard Feynman’s adventurous autobiog-
raphy ”Surely You’re Joking, Mr. Feynman!”
(Norton, New York, 1985) is one of the books
I enjoyed most in recent years. In it is this
story: ”I was in the [Cornell] cafeteria and
some guy, fooling around, throws a plate in
the air. As the plate went up in the air I
saw it wobble, and I noticed the red medal-
lion of Cornell on the plate going around. It
was pretty obvious to me that the medallion
went around faster than the wobbling.... I
started to figure out the motion of the rotat-
ing plate. I discovered that when the angle
is very slight, the medallion rotates twice as
fast as the wobble rate-two to one. It came
out of a complicated equation!” He then tried
to look at this in a more fundamental way. ”I
don’t remember how I did it, but I ultimately
worked out what the motion of the mass par-
ticles is, and how all the accelerations bal-
ance to make it come out two to one.” He
showed this to Hans Bethe, who remained.
unimpressed. But this eventually rekindled
his love for ”playing” with physics, and ”the
diagrams and the whole business that I got
the Nobel Prize for came from that piddling
around with the wobbling plate.”

Great story, except for one little twist: A
torque-free plate wobbles twice as fast as it
spins when the wobble angle is slight. The
ratio of spin to wobble rates is 1:2, not 2:1!

Being less adventurous, I can only present
the reasoning in a conventional manner
through the princi ple of angular momentum
conservation. There are a number of ways to
do this. The simplest is perhaps to solve Eu-
ler’s equation for an axial- symmetric rigid
body (a ”top”) in the body reference frame.
Let the top’s three principal moments of iner-
tia be A, A and C, where C ̸= A so that rota-
tion about the figure axis is stable and a wob-
ble is possible. For small wobble angles, the
solution to Euler’s equation gives the wob-
ble rate ω = fΩ, where f ≡ (C − A)/A and
Ω is the spin rate. The value of f is always
between −1 and 1, approaching −1 for a slen-
der cylinder (a ”rod,” for which C = 0) and 1

for at thin circular disk (a ”plate,” for which
C = 2A). For a slightly oblate spheroid (such
as the Earth or a neutron star), f is slightly
larger than 0 and the wobble is very slow
compared with the spin. In any case, we have
−Ω < ω < Ω.
But this is as seen from the body frame,

which is rotating. In the inertial frame
(where Feynman looks on as the Cornell plate
goes up in the air) the wobble rate is ω0 =
ω + Ω, so that 0 < ω0 < 2Ω. For a rod,
ω0 = 0 (it does not wobble); for the Earth,
w0 is slightly faster than one cycle every 24
hours. And for our plate, w0 = 2Ω: The
spin-to-wob- ble ratio is 1:2.
”Surely You’re Joking, Mr. Feyn- man!”

has little to do with physics per se, and the
above story is one of the few mentions in the
book about specif- ic physics. Whether the
error is a mere slip in memory, or, in keeping
with the spirit of the author and the book,
another practical joke meant for those who
do physics without experimenting, we do not
know and perhaps never will. One thing is
certain, though: This story appears on page
157 of the book and the text is 314 pages
long; and we all know that the ratio of 157 to
314 is 1:2!

Reference
L.D. Landau, E.M. Lifshitz, Mechanics,

3rd ed.. Pergamon, Oxford (1976).

BENJAMIN FONG CHAO
NASA Goddard Space Flight Center,

Greenbelt, Maryland

PHYSICS TODAY,
FEBRUARY 1989, p.15



Feynman: Wobbles, Bottles and
Ripples

Being more adventurous but less careful
than B. Fong Chao (February 1989, page
15), I have tried to reconstruct Richard Feyn-
man’s explanation for the motion of a wob-
bling spinning plate. Why, in ”simple” terms,
does a wobbling plate wobble twice as fast as
it spins? One seeks an explanation like Feyn-
man’s textbook explanation for the torque on
a forced-precession gyroscope in terms of the
Coriolis acceleration of its particle masses.
The wobbling plate is in free precession and,
it turns out, is in some sense easier to under-
stand. So here, for general entertainment, is
an explanation with some equations to help
with visualization.

Consider a particle in a circular orbit
about the origin that is slightly tilted off
a reference plane. Consider another par-
ticle of equal mass also in circular orbit
about the origin, but on a plane tilted
just slightly the other way. Looking down
at the reference plane, let the particles be
one-quarter of a revolution apart. Specifi-
cally, say r1 ≈ (cos t, sin t, ϵ cos t) and r2 ≈
(sin t,− cos t,−ϵ sin t). These two particles,
with the origin, define a plane. One can see
that this plane wobbles around twice as fast
as either of the particles by tracing the par-
ticles’ motion with two fingers (a quarter of
an orbit should give the idea). That is, the
x and y components of its downward normal
are ϵ cos 2t and ϵ sin 2t. Each of the planar
circular orbits could be caused, say, by ty-
ing each of the particles to the origin with
a massless rod. But since the angle between
these two particles is always π/2 (to first or-
der), the two rods might as well be welded to
each. other, though still hinged at the origin.
The two connected particles. now constitute
a rigid body with an inertia tensor about the
origin proportional to that of any planar ax-
isymmetric body about its center of mass– a
plate, for example. The particle pair’s equa-
tions of rotational motion and its actual ro-
tational motion are thus the same as those of
a freely moving plate.

So it turns out that the slight. wobbling
of a free-flying plate is in fact a very sim-

ple motion kinemaically. All of the particles
are traveling in circles (almost) around the
center. All particles on a given radial line
share an orbital plane, tilted slightly from the
planes of other radial lines. This kinematics
has other consequences as well. There exists
the possibility that a planetary ring of parti-
cles in independent circular orbits could ap-
pear as a rigid wobbling ”hula hoop.” Also,
a loop of chain floating in space could move
in this rigid mode even though the chain has
no bending stiffness.
There are other problems for which it is

useful to realize that the rotational motion
of any three-dimensional rigid body is totally
equivalent to that of three particles attached
to three rigid massless rods that are welded
orthogonally to one another and pivoted at
the origin (just two particles for flat objects).
Or, if one does not like tying things to a fixed
origin, one can weld three dumbbells together
to construct an object that looks like a child’s
jack (six masses).
Rigid-body dynamics is hard in general be-

cause it is hard to figure the interaction forces
and moments that might maintain the rigid-
body constraint, even with the few-particle
descriptions of a rigid body described above.
But Feynman’s wobbling plate problem just
happens to be simple in this regard.
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