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Dynamics of the Rattleback

The bottom surface of a rattleback can be approximated by a quadric surface, while its
principal curvature directions deviate from the principal axes of inertia. To describe the
dynamics of the rattleback, we introduce two coordinate systems: the coordinate system
XY Z fixed to the rattleback with the axes aligned with the principal axes of inertia and
its origin at the center of mass G, and the inertia coordinate system xyz with the xy
plane on the floor and the z axis pointing upward vertical direction.

In the XY Z coordinate, the moment of inertia tensor Î is diagonal and is assume to be
given by

Î :=

 A, 0, 0
0, B, 0
0, 0, C

 .

On the other hand, the bottom surface of the rattleback is expressed by the shape function
f(R) as

f(R) = 0.

The function f(R) is given by a non-diagonal matrix Θ̂ξ as

f(R) := −1 +
1

a2
(
X,Y, Z

)
Θ̂ξ

 X
Y
Z

 = −1 +
1

a2
Rt Θ̂ξR. (1)

Let ξ be the misalignment angle between the principal axes of inertia and the principal
axis of the ellipsoid. Then the matrix Θ̂ξ is given by

Θ̂ξ := R̂(ξ)Θ̂R̂(ξ)−1, Θ̂ :=

 θ, 0, 0
0, ϕ, 0
0, 0, 1

 , R̂(ξ) :=

 cos ξ, − sin ξ, 0
sin ξ, cos ξ, 0
0, 0, 1


The center of mass (COM) of the ellipsoid is assume to be located at the center of the
ellipsoid, then the height of G (COM) is a when the rattleback is placed horizontally,
and the principal curvatures are θ/a and ϕ/a. For a typical rattleback, these parameters
satisfy the conditions

ξ ≪ 1, A > B, 1 > θ ≫ ϕ > 0.

Equations of Motion: Let vG be the velocity of COM and ω be the angular velocity,
then the translation and the rotation equations of motion are give by

M
dvG

dt
= F −Mgêz (2)

d
(
Îω
)

dt
= RC × F ; RC := rC − rG. (3)

Here, F is the reaction force from the floor, and RC is the vector pointing from the center
of mass G to the contact point with the floor C.
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The position vector of the contact point RC is determined by two conditions: the contact
point C should be on the bottom surface, and the normal vector at the contact point C
should be in the vertical direction, namely

f(RC) = 0, ∇f(RC) ∥ êz. (4)

The reaction force F determined by the no-slip condition,

vG = RC × ω. (5)

Solution of the Equations of Motion: Eliminating the reaction force F from the
translation and the rotation equations of motion, we obtain

d
(
Îω
)

dt
= RC ×M

(
d

dt

(
RC × ω

)
+ gêz

)
.

Now, in the XY Z coordinate, the time derivative can be expressed as

d
(
Îω
)

dt
= Îω̇ + ω ×

(
Îω
)
,

d

dt

(
RC × ω

)
=

∂

∂t

(
RC × ω

)
+ ω ×

(
RC × ω

)
= ṘC × ω +RC × ω̇ + ω ×

(
RC × ω

)
= ṘC × ω +RC × ω̇ + ω2RC −

(
ω ·RC

)
ω,

using the apparent time derivative in the XY Z coordinate

∂a

∂t
:= ȧ := ȧX êX + ȧY êY + ȧZ êZ

Then, the equation of motion is re-written as

Îω̇ + ω ×
(
Îω
)
= MRC ×

(
ṘC × ω +RC × ω̇ + ω2RC −

(
ω ·RC

)
ω + gêz

)

Îω̇ −MRC ×
(
RC × ω̇

)
= −ω ×

(
Îω
)
+MRC ×

(
ṘC × ω + ω2RC −

(
ω ·RC

)
ω + gêz

)
Îω̇ −M

((
RC · ω̇

)
RC −R2

Cω̇
)
= −ω ×

(
Îω
)
+M

(
RC ×

(
ṘC × ω

)
−
(
ω ·RC

)
RC × ω + gRC × êz

)
= −ω ×

(
Îω
)
+M

((
RC · ω

)
ṘC −

(
RC · ṘC

)
ω −

(
ω ·RC

)
RC × ω + gRC × êz

)
ÎCω̇ = −ω ×

(
Îω
)
+M

((
RC · ω

)
ṘC −

(
RC · ṘC

)
ω −

(
ω ·RC

)
RC × ω + gRC × êz

)

ω̇ = Î−1
C

(
−ω×

(
Îω
)
+M

((
RC ·ω

)
ṘC −

(
RC · ṘC

)
ω−

(
ω ·RC

)
RC ×ω+ gRC × êz

))
Here, ÎC is the inertia tensor centered around the contact point C,

ÎC :=

 A+M
(
R2

C −X2
C

)
, −MXCYC , −MXCZC

−MYCXC , B +M
(
R2

C − Y 2
C

)
, −MYCZC

−MZCXC , −MZCYC , C +M
(
R2

C − Z2
C

)
 .
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drG
dt

= RC × ω

ω̇ = Î−1
C

(
− ω ×

(
Îω
)
+M

((
RC · ω

)
ṘC −

(
RC · ṘC

)
ω

−
(
ω ·RC

)
RC × ω + gRC × êz

) )
dRq

dt
=

1

2
Rqωq ; Rq : the transformation quaternion from the XY Z to the xyz frame
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The contact point position RC and its time derivative ṘC

Suppose

f(R) := −1 +
1

a2
(
X,Y, Z

)
Θ̂ξ

 X
Y
Z

 = −1 +
1

a2
Rt Θ̂ξR,

Θ̂ξ := R̂(ξ)Θ̂R̂(ξ)−1, Θ̂ :=

 θ, 0, 0
0, ϕ, 0
0, 0, 1

 , R̂(ξ) :=

 cos ξ, − sin ξ, 0
sin ξ, cos ξ, 0
0, 0, 1

 ,

then, we have

∇f =
2

a2
Θ̂ξ

 X
Y
Z

 =
2

a2
Θ̂ξR,

which leads to

∇f ∥ êz ⇒ ez =
ezZ
ZC

Θ̂ξRC ⇒ RC =
ZC

ezZ
Θ̂−1

ξ ez.

From f(RC) = 0, we also have

a2 = Rt
C Θ̂ξRC =

(
ZC

ezZ

)2

et
zΘ̂

−1
ξ ez ⇒ ZC = −a ezZ

(
et
zΘ̂

−1
ξ ez

)−1/2

.

Time Derivative:

ṘC =

(
ŻC

ezZ
− ZC ėzZ

e2zZ

)
Θ̂−1

ξ êz +
ZC

ezZ
Θ̂−1

ξ ėz

ėz = −ω × ez

a2 = Rt
C Θ̂ξ RC ⇒ 0 = Ṙt

C Θ̂ξ RC = Ṙt
C

ZC

ezZ
ez ⇒ ez · ṘC = 0

Substituting the above expressions into this, we have(
ŻC

ZC

− ėzZ
ezZ

)
et
z RC = −ZC

ezZ
et
z Θ̂

−1
ξ ėz = −Rt

C ėz

∴ ŻC = ZC

(
ėzZ
ezZ

− ėt
zRC

et
z RC

)
= ZC

(
ėzZ
ezZ

− ZC

ezZa2
ėt
zRC

)
This matches the previous expression.
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Parameters:

• Geometrical parameters:
a[L] = 1, θ, ϕ, ξ

• Physical properties:
M [M] = 1, A, B, C, [ML2]

• Physical constants:
g[LT−2] = 1

• Auxiliary parameters:
Lx, rx, Ly, ry [L], ρ [ML−3]

Î , Θ̂, Θ̂ξ, Rξ

Variables:

rG, ω, Rq

RC , ez, ÎC

mass and moment of inertia tensor

M = Mx +My = 1; Mx = πr2xLxρ, My = πr2yLyρ

A =
1

12
MyL

2
y; My =

r2yLy

r2xLx + r2yLy

M

B =
1

12
MxL

2
x; Mx =

r2xLx

r2xLx + r2yLy

M

C = A+B

Relationship between coordinate systems: AS
q = RqA

B
q R

−1
q

ezX î+ ezY ĵ + ezZ k̂ = R−1
q k̂ Rq

eXxî+ eXy ĵ + eXzk̂ = Rq îR
−1
q

eY xî+ eY y ĵ + eY zk̂ = Rq ĵR
−1
q

eZxî+ eZy ĵ + eZzk̂ = Rq k̂R
−1
q

Energy

E = K + U ; K =
1

2
Mv2G +

1

2
ωtÎ ω, U = −MgRC · ez

5



Small oscillations about the X axis (pitching):

Supposing that, in the case ξ = 0, the pitching oscillation satisfies

ω = (ω, 0, 0), RC ≈ (0, YC ,−a), ez ≈ (0, u, 1),

we will determine the period of small oscillation aroud the X axis within the first order
approximation in ω, YC , and u.

The component of ez in the XY Z frame follows the equation

dez

dt
= ėz + ω × ez = 0 ⇒ u̇ ≈ ω, (6)

while we can approximate as

YC ≈ −aϕ−1u, ẎC ≈ aϕ−1ω

because ZC ≈ −a, ezZ ≈ 1, ŻC ≈ 0, ėzZ ≈ 0.

These approximations lead to the equation for ω

ω̇ ≈ M

A+Ma2
g (0, YC ,−a)× (0, u, 1)

∣∣
X
=

Ma2

A+Ma2
g

a2
(
YC + au

)
= − Ma2

A+Ma2
g

a

(
ϕ−1 − 1

)
u

within the first order approximation of small quantities. Using Eq.(6), we have

ω̈ ≈ − Ma2

A+Ma2
g

a

(
ϕ−1 − 1

)
ω,

thus the pitching oscillation period is

Tpitch ≈ 2π

√(
A

Ma2
+ 1

)
1

ϕ−1 − 1

a

g
.

Small oscillations about the Y axis (rolling):

Similarly, the rolling oscillation period is

Troll ≈ 2π

√(
B

Ma2
+ 1

)
1

θ−1 − 1

a

g
.
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